Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
1.
Hepatology ; 74(4): 1825-1844, 2021 10.
Article in English | MEDLINE | ID: covidwho-1372726

ABSTRACT

BACKGROUND AND AIMS: NASH will soon become the leading cause of liver transplantation in the United States and is also associated with increased COVID-19 mortality. Currently, there are no Food and Drug Administration-approved drugs available that slow NASH progression or address NASH liver involvement in COVID-19. Because animal models cannot fully recapitulate human NASH, we hypothesized that stem cells isolated directly from end-stage liver from patients with NASH may address current knowledge gaps in human NASH pathology. APPROACH AND RESULTS: We devised methods that allow the derivation, proliferation, hepatic differentiation, and extensive characterization of bipotent ductal organoids from irreversibly damaged liver from patients with NASH. The transcriptomes of organoids derived from NASH liver, but not healthy liver, show significant up-regulation of proinflammatory and cytochrome p450-related pathways, as well as of known liver fibrosis and tumor markers, with the degree of up-regulation being patient-specific. Functionally, NASH liver organoids exhibit reduced passaging/growth capacity and hallmarks of NASH liver, including decreased albumin production, increased free fatty acid-induced lipid accumulation, increased sensitivity to apoptotic stimuli, and increased cytochrome P450 metabolism. After hepatic differentiation, NASH liver organoids exhibit reduced ability to dedifferentiate back to the biliary state, consistent with the known reduced regenerative ability of NASH livers. Intriguingly, NASH liver organoids also show strongly increased permissiveness to severe acute respiratory syndrome-coronavirus 2 (SARS-CoV-2) vesicular stomatitis pseudovirus as well as up-regulation of ubiquitin D, a known inhibitor of the antiviral interferon host response. CONCLUSION: Expansion of primary liver stem cells/organoids derived directly from irreversibly damaged liver from patients with NASH opens up experimental avenues for personalized disease modeling and drug development that has the potential to slow human NASH progression and to counteract NASH-related SARS-CoV-2 effects.


Subject(s)
End Stage Liver Disease/pathology , Liver/pathology , Non-alcoholic Fatty Liver Disease/pathology , Organoids/metabolism , Adult , Aged , Biopsy , COVID-19/complications , COVID-19/virology , Cell Differentiation/immunology , End Stage Liver Disease/immunology , Female , Gene Expression Profiling , Healthy Volunteers , Hepatocytes/immunology , Hepatocytes/metabolism , Humans , Induced Pluripotent Stem Cells/immunology , Induced Pluripotent Stem Cells/metabolism , Liver/cytology , Liver/immunology , Liver Regeneration , Male , Middle Aged , Non-alcoholic Fatty Liver Disease/immunology , Non-alcoholic Fatty Liver Disease/virology , Organoids/immunology , SARS-CoV-2/immunology , Up-Regulation/immunology
2.
Cells ; 10(5)2021 05 04.
Article in English | MEDLINE | ID: covidwho-1223957

ABSTRACT

Liver injury in COVID-19 patients has progressively emerged, even in those without a history of liver disease, yet the mechanism of liver pathogenicity is still controversial. COVID-19 is frequently associated with increased serum ferritin levels, and hyperferritinemia was shown to correlate with illness severity. The liver is the major site for iron storage, and conditions of iron overload have been established to have a pathogenic role in development of liver diseases. We presented here six patients who developed severe COVID-19, with biochemical evidence of liver failure. Three cases were survived patients, who underwent liver biopsy; the other three were deceased patients, who were autopsied. None of the patients suffered underlying liver pathologies. Histopathological and ultrastructural analyses were performed. The most striking finding we demonstrated in all patients was iron accumulation into hepatocytes, associated with degenerative changes. Abundant ferritin particles were found enclosed in siderosomes, and large aggregates of hemosiderin were found, often in close contact with damaged mitochondria. Iron-caused oxidative stress may be responsible for mitochondria metabolic dysfunction. In agreement with this, association between mitochondria and lipid droplets was also found. Overall, our data suggest that hepatic iron overload could be the pathogenic trigger of liver injury associated to COVID-19.


Subject(s)
COVID-19/diagnosis , Iron Overload/etiology , Liver Failure/etiology , Liver/pathology , Severity of Illness Index , Adult , Aged , Antiviral Agents , Biopsy , COVID-19/complications , COVID-19/mortality , COVID-19/therapy , Female , Ferritins/analysis , Hepatocytes/cytology , Hepatocytes/pathology , Humans , Iron/analysis , Iron/metabolism , Iron Overload/mortality , Iron Overload/pathology , Iron Overload/therapy , Liver/cytology , Liver/metabolism , Liver Failure/mortality , Liver Failure/pathology , Liver Failure/therapy , Liver Function Tests , Male , Middle Aged , Mitochondria/pathology , Positive-Pressure Respiration , SARS-CoV-2/isolation & purification
3.
World J Gastroenterol ; 26(48): 7693-7706, 2020 Dec 28.
Article in English | MEDLINE | ID: covidwho-1073508

ABSTRACT

BACKGROUND: Coronavirus disease 2019 (COVID-19) disease can frequently affect the liver. Data on hepatic histopathological findings in COVID-19 is scarce. AIM: To characterize hepatic pathological findings in patients with COVID-19. METHODS: We conducted a systematic review with meta-analysis registered on PROSPERO (CRD42020192813), following PRISMA guidelines. Eligible trials were those including patients of any age and COVID-19 diagnosis based on a molecular test. Histopathological reports from deceased COVID-19 patients undergoing autopsy or liver biopsy were reviewed. Articles including less than ten patients were excluded. Proportions were pooled using random-effects models. Q statistic and I 2 were used to assess heterogeneity and levels of evidence, respectively. RESULTS: We identified 18 studies from 7 countries; all were case reports and case series from autopsies. All the patients were over 15 years old, and 67.2% were male. We performed a meta-analysis of 5 studies, including 116 patients. Pooled prevalence estimates of liver histopathological findings were hepatic steatosis 55.1% [95% confidence interval (CI): 46.2-63.8], congestion of hepatic sinuses 34.7% (95%CI: 7.9-68.4), vascular thrombosis 29.4% (95%CI: 0.4-87.2), fibrosis 20.5% (95%CI: 0.6-57.9), Kupffer cell hyperplasia 13.5% (95%CI: 0.6-54.3), portal inflammation 13.2% (95%CI: 0.1-48.8), and lobular inflammation 11.6% (95%CI: 0.3-35.7). We also identified the presence of venous outflow obstruction, phlebosclerosis of the portal vein, herniated portal vein, periportal abnormal vessels, hemophagocytosis, and necrosis. CONCLUSION: We found a high prevalence of hepatic steatosis and vascular thrombosis as major histological liver features. Other frequent findings included portal and lobular inflammation and Kupffer cell hyperplasia or proliferation. Further studies are needed to establish the mechanisms and implications of these findings.


Subject(s)
COVID-19/complications , Fatty Liver/epidemiology , Hepatic Veins/pathology , Liver/pathology , Venous Thrombosis/epidemiology , COVID-19/diagnosis , COVID-19/mortality , COVID-19/virology , Fatty Liver/etiology , Fatty Liver/pathology , Humans , Kupffer Cells/pathology , Liver/blood supply , Liver/cytology , Prevalence , SARS-CoV-2/isolation & purification , SARS-CoV-2/pathogenicity , Venous Thrombosis/etiology , Venous Thrombosis/pathology
4.
Arch Toxicol ; 94(12): 4037-4041, 2020 12.
Article in English | MEDLINE | ID: covidwho-716276

ABSTRACT

Besides lung drastic involvement, SARS-CoV-2 severely affected other systems including liver. Emerging epidemiological studies brought the attentions towards liver injury and impairment as a potential outcome of COVID19. Angiotensin-converting enzyme 2 (ACE2) and Transmembrane serine protease (TMPRSS2) are the main cell entry receptors of SARS-CoV-2. We have tested the ability of medications to regulate expression of SARS-CoV-2 receptors. Understanding that may reflect how such medications may affect the level of infectivity and permissibility of the liver following COVID-19. Using transcriptomic datasets, Toxicogenomic Project-Genomics Assisted Toxicity Evaluation System (Open TG-GATEs) and GSE30351, we have tested the ability of ninety common medications to regulate COVID-19 receptors expression in human primary hepatocytes. Most medications displayed a dose-dependent change in expression of receptors which could hint at a potentially more pronounced change with chronic use. The expression level of TMPRSS2 was increased noticeably with a number of medications such as metformin. Within the analgesics, acetaminophen revealed a dose-dependent reduction in expression of ACE2, while non-steroidal anti-inflammatory drugs had mixed effect on receptors expression. To confirm the observed effects on primary human hepatocytes, rat hepatocyte treatments data was obtained from DrugMatrix toxicogenomic database (GSE57805), which showed a similar ACE2 and TMPRSS2 expression pattern. Treatment of common co-morbidities often require chronic use of multiple medications, which may result in an additive increase in the expression of ACE2 and TMPRSS2. More research is needed to determine the effect of different medications on COVID-19 receptors.


Subject(s)
Betacoronavirus/pathogenicity , Hepatocytes/drug effects , Hepatocytes/virology , Peptidyl-Dipeptidase A/genetics , Serine Endopeptidases/genetics , Virus Internalization/drug effects , Acetaminophen/administration & dosage , Acetaminophen/pharmacology , Angiotensin-Converting Enzyme 2 , Animals , COVID-19 , Cells, Cultured , Coronavirus Infections/therapy , Dose-Response Relationship, Drug , Griseofulvin/pharmacology , Host-Pathogen Interactions/drug effects , Humans , Hypoglycemic Agents/pharmacology , Liver/cytology , Liver/virology , Pandemics , Pneumonia, Viral/therapy , Rats , SARS-CoV-2
SELECTION OF CITATIONS
SEARCH DETAIL